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The high-energy kink or the waterfall effect seen in the photoemission spectra of cuprates is suggestive of
the coupling of quasiparticles to a high-energy bosonic mode with implications for the mechanism of super-
conductivity. Recent experiments, however, indicate that this effect may be an artifact produced entirely by
matrix element effects, i.e., by the way the photoemitted electron couples to incident photons in the emission
process. In order to address this issue directly, we have carried out realistic computations of the photointensity
in Bi2Sr2CaCu2O8 where the effects of the matrix element are included together with those of the corrections
to the self-energy resulting from electronic excitations. Our results demonstrate that while the photoemission
matrix element plays an important role in shaping the spectra, the waterfall effect is a clear signature of the
presence of strong coupling of quasiparticles to electronic excitations.
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I. INTRODUCTION

An anomalous “high-energy kink” �HEK� in dispersion,
which gives the associated angle-resolved photoemission
�ARPES� spectrum the appearance of a “waterfall” was first
seen1,2 in Bi2Sr2CaCu2O8 �Bi2212� cuprate superconductors.
Such HEKs or waterfalls have now been established as being
a universal feature in the cuprates,1–3 and interpreted as
providing evidence for interaction of the quasiparticles with
some bosonic mode of the system.4,5 The high-energy
scale of this boson ��500 meV� would then provide a
tangible electronic mechanism of high-temperature
superconductivity.6,7 However, recent experiments show that
the HEK is quite sensitive to matrix element �ME� effects,
i.e., to the nature of the photoemission process itself, or in
other words, the way the incident photon couples with the
electronic states of the system in generating the photoemitted
electrons. In particular, the ARPES spectra undergo substan-
tial changes in shape as one probes the electronic states by
varying the energy of the incident photon or the momentum
of the outgoing electron.8–10 In Bi2212, for example, the
shape of the ARPES spectrum varies with photon energy
from a shape that displays a single band tail with relatively
large intensity giving the spectrum a “Y” shape, to a spec-
trum which shows the presence of double tails with a
waterfall.11 These results have led to speculation that the
HEK may be an artifact produced entirely by ME effects,
questioning thus the fundamental importance of the waterfall
effect in the physics of correlated electron systems.8,11,12

In order to address this controversy, we have carried out
first-principles, one-step photointensity computations in
Bi2212 in which we include not only the effects of the
ARPES matrix element but also incorporate a model self-
energy based on accurate susceptibility calculations which
properly reproduce the HEK phenomenology.4,13–18 In this
way, we establish conclusively that despite a strong modula-
tion of the spectra due to the ARPES matrix element, a genu-

ine HEK or a waterfall effect is still present in the cuprates,
and that its presence indicates a significant coupling to
bosons of electronic origin. Given the strength of the cou-
pling and the associated high-energy scale, these bosons will
play an important role in the Mott as well as the supercon-
ducting physics of the cuprates. In this connection, we also
discuss model ARPES computations based on a simplified
tight-binding model for the purpose of gaining a handle on
the interplay between the matrix element and self-energy ef-
fects, and for delineating the nature of the striking character-
istics of the ARPES matrix element such as the crossover
from the Y-type spectral shape to the waterfall shape with
photon energy. In this study, we consider the overdoped nor-
mal state where the pseudogap and superconducting gap are
absent, allowing us to highlight the waterfall effect. In any
event, the waterfall physics is insensitive to the presence of
the low-energy pseudogap or the superconducting gap.17,19

II. “WATERFALL” PHENOMENON IN FIRST-PRINCIPLES
CALCULATIONS

We discuss our key findings with reference to Fig. 1. Note
first how the shape of the experimental spectrum changes
dramatically at different photon energies. In panel �a� at 81
eV, the spectral intensity presents the appearance of a pair of
waterfalls with a region of low intensity through the middle
of the figure. This is in sharp contrast to the measured spec-
trum in �b� at 64 eV where we see a “Y shape” with the two
arms of the Y connecting a vertical region of high intensity.
Our realistic first-principles photointensity computations in
which the matrix element as well as self-energy effects are
accounted for reproduce the characteristic features of these
shapes, the waterfall shape in panel �c� at 81 eV and the Y
shape in panel �d� at 64 eV. In panels �e� and �f� we have
excluded the self-energy corrections in the photointensity
computations. It is seen immediately that the results of pan-
els �e� and �f� bear little resemblance to the experimental
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spectra even though these computations include the effects of
the ARPES matrix element.20 The comparisons of Fig. 1
show very clearly that the waterfall effect cannot be obtained
through the effect of the ARPES matrix element alone. We
emphasize that we obtain our many-body self-energy correc-
tion self-consistently by computing the susceptibility within
a GW-type scheme, which is applicable to the entire doping
range to model not only the waterfall physics but also the
pseudogap and the superconducting gap; see Sec. V and Ap-
pendix A for details of the self-energy computation. As al-
ready noted, here we focus on the overdoped case to high-
light the waterfall effect.

III. UNDERSTANDING THE SEPARATE ROLES OF SELF-
ENERGY AND MATRIX ELEMENT IN THE

“WATERFALL” FEATURE

For the purpose of delineating the roles of the self-energy
and matrix elements in shaping the ARPES spectra, Fig. 2
presents the results of photointensity computations based on
a simplified two-band tight-binding Hamiltonian which mod-
els the low-energy electronic structure of Bi2212.21,22 We
have used a tight-binding fit to the local-density approxima-
tion �LDA� dispersion23–27 and the same self-energy as in the
first-principles calculation of Fig. 1 above, whose real and
imaginary parts are shown in Fig. 2�a� for the antibonding
band �AB� �similar results for the bonding band �BB� are not
shown for brevity�. The model bands dressed by only the real
part of the self-energy are shown in Fig. 2�b�, together with

the LDA bands at kz=2� /c �magenta lines�. The real part of
the self-energy �solid blue line in �a�� is almost linear in � in
the low-energy region. We write the slope of the linear part
as �1−Z−1� to define the renormalization coefficient Z. This

leads to a renormalized quasiparticle dispersion �̄k=Z�k,
which, e.g., reduces the bilayer splitting between the AB and
BB at the antinodal point to Z���,0

AB −��,0
BB �, consistent with

experimental results.8,22 In contrast, at the � point the self-
energy �����

AB/BB� is negative,28 so that the dressed bands
determined by ��

AB/BB+�����
AB/BB� move further away from

each other.29 These opposing tendencies at low and high en-
ergies, which are seen clearly in the experimental spectra,30

are an unambiguous signature of strong coupling to a
bosonic mode at intermediate energy.

When the imaginary part of the self-energy �� is turned
on, interesting spectral weight modulations emerge, which
are shown separately in Figs. 2�c� and 2�d� for the AB and
BB, respectively. �� plays a crucial role in redistributing
spectral weight such that the weight is shifted from the co-
herent region near the Fermi energy into incoherent parts at
higher energies to produce the HEK features seen
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FIG. 1. �Color online� ARPES spectra in Bi2212. �a� and �b� are
experimental results at photon energies of 81 and 64 eV, respec-
tively �Ref. 11�. �c� and �d� are the corresponding theoretical pho-
toemission spectra based on first-principles one-step calculations in
which the self-energy correction is included. �e� and �f� computa-
tions where the self-energy correction is excluded to highlight the
key role of self-energy corrections in explaining the experimentally
observed waterfall effect �Ref. 20�.

FIG. 2. �Color online� Model self-energy and spectral weight in
Bi2212. �a� Real �blue solid line� and imaginary �red dashed line�
parts of the computed self-energy used in photointensity computa-
tions. The blue dash-dotted line gives �−��

AB. �b� Dispersion renor-
malized by the real part of the self-energy in �a� is compared to the
bare dispersion of the antibonding band �AB, white solid line� and
the bonding band �BB, white dash-dotted line�. �c� and �d� spectral
weights dressed by real and imaginary parts of the self-energy for
AB and BB, respectively. �e� and �f� photoemission intensities ob-
tained after incorporating the matrix elements at the two indicated
photon energies. �g� and �h� are photoemission intensities with ma-
trix element effects, but without including the self-energy
correction.
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experimentally.4 However, the differences noted earlier near
� lead to striking differences in the manifestation of the kink
effect in the AB and BB spectra. In AB, the band bottom at �
lies above the waterfall region, and �� creates a long tail in
the dispersion extending to high energies,31 so that the fully
dressed band exhibits the Y-shaped pattern of panel �c�. In
contrast, the waterfall shape emerges distinctly in the bond-
ing band in panel �d� where the band bottom lies below the
boson peak. These two dispersions are remarkably close to
the two experimental dispersions observed at different pho-
ton energies as seen in Figs. 1�a� and 1�b� �Ref. 11� and
provide insight into the nature of the waterfall phenomenon
in the spectra. Figures 2�e� and 2�f� show how when the
photointensity is computed for the bilayer system, the matrix
element highlights the AB or BB at two different photon
energies in accord with the experimental spectra. In sharp
contrast, when the self-energy correction is removed from
the computations in Figs. 2�g� and 2�h�, the waterfall effect
disappears, even in the presence of matrix element effects,
leaving only the underlying LDA dispersion.

IV. MODULATION OF “WATERFALL” SHAPE AND “Y”
SHAPE AS A FUNCTION OF PHOTON ENERGY

AND THE ROLE OF BILAYER SPLITTING

Insight into the energy dependence of the spectra and con-
tributions of different orbitals therein can be obtained within
the tight-binding framework. Details of our tight-binding
photointensity computations are given in Appendix B. In par-
ticular, the tight-binding matrix element M can be written in
terms of a structure factor Si

��k f�

M��k f� = �
i

Si
��k f�e−ikf·Ri. �1�

Here � is a band index, kf is the momentum of the ejected
electron. and Ri is the position of the ith atom in the unit
cell.

For a bilayer system, the structure factor of Eq. �1� is
independent of kf

�, and the matrix elements for the bilayer
can be simply related to the matrix element of a single layer
M�

0 �k f
��

M�
��k f� = M�

0 �k f
���1 � e−ikf

�d� , �2�

where the + sign refers to the AB and the − sign to the BB,
and d denotes the separation of the CuO2 layers in a
bilayer.32,33 The key feature of Eq. �2� is the interference
term in brackets, where kf

� depends on the photon energy
through11,34

kf
� =�2m

	2 �h
 − Ebind − � + V0� − �k� + n�G��2, �3�

where h
 is the incident photon energy and Ebind	0.6 eV is
the binding energy of the electron in the solid at the water-
fall, �	4 eV is the work function, V0=10 eV is the inner
potential of the crystal and k� +n�G� is the total in-plane wave
number, which we have taken to be 	2� /a to match the
experimental conditions.35 Since the two bilayer terms in Eq.
�2� are out of phase �note � sign��, whenever kf

�d changes

by �, the spectrum would switch from the odd to the even
bilayer, a change that can be induced in view of Eq. �3� via
the photon frequency 
. This behavior is indeed seen in pan-
els �e� and �f� of Fig. 2 where the matrix element is incorpo-
rated in the photointensity computations using Eqs. �1�–�3�.
In particular, at 75 eV in panel �f�, the AB gets highlighted
resulting in a Y-shaped spectrum with a tail extending to high
energies. In contrast, in panel �e� at 95 eV, the bonding band
dominates and spectral shape reverts to that of a waterfall
with a double tail.

Along the preceding lines, Fig. 3 further discusses the Y
to waterfall shape change as a function of the photon energy.
For this purpose, we consider in Fig. 3 the integrated spectral
weight over the shaded binding-energy window shown in
Fig. 1�a� and 1�b�. The Y shape is then characterized by a
relatively narrow single tail in momentum �vertical axis in
Fig. 3�, while the waterfall displays a splitting of this feature
due to the presence of two tails. The experimental results of
Ref. 11 shown in Fig. 3�a� are seen to be in good accord with
the corresponding first-principles computations in Fig. 3�b�
and with tight-binding computations in Fig. 3�c�, some dif-

FIG. 3. �Color online� Spectral weight integrated over the
shaded binding-energy window of Fig. 1�a� and 1�b� in the interme-
diate energy region is shown to highlight how the spectra vary
between the Y and waterfall shapes as a function of photon energy.
�a� Experimental spectral weights normalized to the peak intensity
at each energy �Ref. 11�. �b� Theoretical weights corresponding to
the first-principles computations of spectra in Figs. 1�c� and 1�d�.
�c� Corresponding weights based on the tight-binding spectra of
Figs. 2�e� and 2�f�. Color scheme is the same as in Fig. 1.
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ferences between theory and experiment with respect to the
onset of Y or waterfall shape in photon energy notwithstand-
ing.

V. DOPING DEPENDENCE OF “WATERFALL”
PHENOMENON IN THE PRESENCE OF PSEUDOGAP

AND SUPERCONDUCTING GAP

In order to explicate the role of matrix elements, we have
focused on the relatively simpler overdoped case in the pre-
ceding sections. However, the present QP-GW scheme is ap-
plicable to the entire doping range from the half-filled to the
overdoped state and it thus models the pseudogap and super-
conducting �SC� physics including the waterfall features.

The pseudogap is modeled here as due to �� ,�� antifer-
romagnetic order and the d-wave superconductivity is treated
within the BCS theory where the pairing potential is fitted to
the experimental gap value. We illustrate the comprehensive
nature of our self-energy in the Bi2212 system �here we fo-
cus on the antibonding band only� with reference to Fig. 4,
which gives the evolution of the spectral weight in going
from the insulating to the overdoped system. Note that the
spectral weight in the low-energy region near the Fermi en-
ergy undergoes substantial changes as we go from the AFM
insulator in panel �a� for doping x=0.06, to the �AFM+SC�
case in panel �b�, to the SC case only in panel �c�, to finally
the paramagnetic case of panel �d� for the overdoped system.
The key point to note is that despite these large changes in
the low-energy region, the waterfall region is virtually unaf-
fected throughout the entire doping range with the waterfall
feature starting at roughly the same energy �shown by ar-
row�.

VI. CONCLUSION

In summary, we have carried out computations of the pho-
tointensity in Bi2212 where the effects of the photoemission
matrix element as well those of the coupling of the quasipar-
ticles to electronic excitations are included realistically.36–40

We thus establish that despite the importance of the matrix
element in shaping the spectra, the waterfall effect is a clear
signature of the coupling of the electronic system to a high-
energy bosonic mode, which bears on the physics of the
pseudogap17,41 and the mechanism of high-temperature
superconductivity.6,7 Our analysis of the spectra based on a
simplified two-band tight-binding model reveals how the
near-Fermi-energy bonding and antibonding bands associ-
ated with the CuO2 bilayers in Bi2212 produce characteristic
Y shape and waterfall shape of the spectrum as a function of
the energy of the incident photons. Such a modulation of the
spectrum with photon energy may provide a new spectro-
scopic tool for getting a handle on the structural aspects of
the bilayer via the photoemission technique.
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APPENDIX A: DETAILS OF SELF-ENERGY
CALCULATION

Our starting point is a bilayer split tight-binding band
where the dispersion is fitted to the first-principles LDA
bands based on Cu dx2−y2 and oxygen px and py orbitals. The
self-energy is then computed by using the GW method as

�
�k,i�n� = �

�

�
q



−�

� d��

2�
�G
��k − q,i�n + ���

W

��q,��� . �A1�

Here G
 is the single-particle Green’s function for the anti-
bonding �
=+� or the bonding �
=−� band and � is a vertex
correction. The interaction term W

� includes both spin and
charge fluctuations and for the paramagnetic case can be

written as W

�= �U2 /2�Im�3�s


�+�c



��. U is the onsite Hub-

bard U and �s/c


� is the spin/charge susceptibility due to in-

traband �
=
�� or interband �
�
�� correlations. Within the
random-phase approximation,

�c/s


��q,�� = �


�

�0


��q,���1 � U�0�q,���
�
�

−1 , �A2�

where the � sign on the right-hand side of the equation
refers to the charge/spin channel.

A variety of GW schemes have been presented in the
literature and involve differences in the way the G and W
terms on the right-hand side �rhs� of Eq. �A1� are approxi-
mated. In our particular scheme, which we refer to as the
quasiparticle GW �QP-GW� scheme, the self-energy is evalu-

FIG. 4. �Color online� Spectral weight dressed by self-energy as
a function of doping x as discussed in the text. Black arrows mark
the onset of the waterfall feature.
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ated self-consistently using the low-energy expansion,
�0����= �1−Z−1��. The Green’s function on the rhs of Eq.

�A1� then becomes GZ

 =Zf��̄k


��i�n− �̄k

�−1 with f being the

Fermi function and �̄k

 =Z�k


, which leads to the bare two-
particle correlation function,

�0Z


��q,i�n� =

1

�
�
k

�
n

GZ

�k,ipn�GZ


��k + q,ipn + i�n�

= − Z2�
k

f��̄k

� − f��̄k+q


� �

i�n + �̄k

 − �̄k+q


�
�A3�

with �=1 /kBT. The vertex correction within Ward’s identity
is taken as �Z=1 /Z. Finally, the renormalization factor Z is
found self-consistently by requiring that the input �0-dressed
dispersion and the final �-dressed dispersion agree in the
low-energy region. Since the band parameters are taken from
LDA, this means that the only free parameter in our GW
scheme is the Hubbard U. In this study, doping is fixed in the
optimal regime of Bi2212 with Hubbard U=1 eV, which is
in accord with mean-field calculations.4 We then obtain a
self-consistent value of Z=0.5.

Although we have focused on the relatively simpler over-
doped case above, where the pseudogap and the supercon-
ducting gap are not present in the spectrum, our QP-GW
scheme and Eqs. �A1�–�A3� can be extended straightfor-
wardly to model the self-energy over the entire doping range.

APPENDIX B: DETAILS OF PHOTOEMISSION MATRIX
ELEMENT CALCULATION IN THE TIGHT-

BINDING SCHEME

The matrix element for transition from an initial state ���
to the final state �kf� can be obtained using the standard Fer-
mi’s Golden rule for the �th band

M��k f� = kf�A · p���

= 	A�̂ · k f �
j,nlm

�− i�lYlm��kf
,�kf

�Fnl�kf�

j,nlm���e−ikf·Rj . �B1�

Here k f is the momentum of the ejected electron, �̂ denotes
the polarization of light with vector potential A, and Ylm is
the spherical harmonic for the angular variables of k f. The
final state is taken to be a free-electron state. The initial state
��� is a tight-binding state, which is expanded into atomic
orbital �nlm� of the jth atom in the unit cell at position Rj.
The form factor

Fnl�kf� =
 r2drjl�kfr�Rnl�r� , �B2�

where jl is a spherical Bessel function, is evaluated numeri-
cally using the radial part of the atomic wave function.

Figure 5�a� shows that at low kf the Cu contribution F32
for the Cu dx2−y2 orbital is dominant, while the oxygen con-
tribution F21 for the oxygen px and py orbitals dominates for
kf �2 Å−1. Although Eq. �B1� is general, in this study we
have used only three orbitals, i.e., Cu dx2−y2, O px, and O py

in expanding the antibonding and bonding bands to obtain
the photointensities for our illustrative purposes. Finally, Eq.
�B1� can be recast into a useful form by collapsing all the
symmetry information concerning the ith orbital into the
structure factor Si

��k f� as seen in Eq. �1� of the main text.
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